第六百四十八章
燕京。
燕大數學研究所內。
數學家們在各自的辦公室內,緊張的忙碌著。
距離課題組第一次全體員工會議的召開,差不多已經過去了一周左右的時間。
在這一周時間內。
課題組三十位員工已經從各自的模塊組長手裡,領取到了各自的任務,接著如火如荼的投入到研究工作當中。
在顧律製定的那套方案中,是把整個幾何-代數-拓撲大一統理論的構建過程,分成了兩個部分。
第一部分,是由西蒙、張煒、亞力克三人所主導的,在幾何、代數、拓撲這三個方向上的延伸探索,並利用顧律在方案中所提出的那五個工具進行各自領域的整合。
第二部分,是將幾何、代數、拓撲這三個模塊中整合出的內容,按照其中內在的聯係,全部拚接到同一套框架之下。
這部分工作主要是由顧律在進行。
並且。
這兩部分的工作,並沒有先後順序,而是在同時進行的。
西蒙、張煒、亞力克這三十位員工負責一部分,顧律負責另一部分。
現在,一周的時間過去。
在西蒙、張煒、亞力克三人那邊各自將他們第一階段的研究成果遞交到顧律這邊後,顧律也已經開始了他的工作。
…………
“……由上,可得存在一種函數,可以聯係伽羅瓦群表示與自守形式,這種函數可稱為L函數。”
“在L函數中引入朗蘭茲綱領的概念,可得之在L函數中,GL(2)是最簡單的非交換約化群。”
“為了進一步研究一般的非交換約化群,需要建立一種穩定性跡公式,這種穩定性跡公式和Ngo證明的“基本引理”,可以導致對典型群自守表示從一般線性群角度的內部分類。而函子性的大幅統一,又可以……”
劈裡啪啦。
顧律的手指在鍵盤上敲擊的啪啪響。
顧律利用L函數為切入點,輕鬆的將西蒙三人第一階段提交上來的內容整合到一塊。
而所謂的L函數,這是加拿大數學家Langlands在上世紀提出的一個概念。
主要作用是作為聯係幾何和代數這兩個領域之間的一個紐帶。
L函數主要定義了一些簡約群的自守表示形式。
該函數在千禧年七大數學猜想的中的BSD猜想以及霍奇猜想中都有所體現。
當年顧律在證明狹義霍奇猜想的時候,就沒少使用這個東西,所以使用起來已經得心應手。
雖然說,L函數並沒有被顧律列在構建幾何-代數-拓撲大一統理論的‘五大工具’當中。
不過……
作為一個小小的紐帶,L函數使用起來還是很方便的。
尤其是在課題組在起步初期,所設計內容還不那麼負責的情況下。
而隨著時間的不斷推移。
所研究內容的深度和複雜度越來越高,到那時候,像是狹義霍奇猜想、複環猜想這樣的工具就派的上用場了。
…………
提起複環猜想,顧律就又想到了畢齊那邊。
舒展了一下懶腰,顧律合上電腦,活動了一下有些僵硬的身體,邁著慢悠悠的步伐走到畢齊四人所在的那間辦公室。
辦公室內。
畢齊四人全部圍坐在同一桌辦公桌前,低聲議論紛紛的在激烈討論。
“你們不會又吵架了吧?”顧律推門進去,見到的就是這樣一副景象,下意識的回想起不久前的那一幕。
“沒,老師,我們沒有。”畢齊擺擺手,訕訕笑笑,“這不是複環猜想的攻克馬上就要進入收尾階段了嘛,我們正在分配任務。”
“那就行,那就行,我還以為你又和陳默你們兩個吵起來了呢!”顧律淡淡一笑。
“老師,我現在和畢齊師弟親如一家人,關係好著呢!”陳默笑嘻嘻的一把摟住畢齊的肩膀,“畢齊師弟,你說是不是?”
“是你個香蕉耙耙錘,陳默,你在這樣摟著我,彆怪我晚上又跑去你的寢室。”畢齊望著陳默摟住自己的右手,嫌棄的撇撇嘴。
鬨騰了一陣,畢齊和陳默這對冤家才安靜下來。
顧律無奈的扶了一下額頭,問道,“關於複環猜想,最近一周的進展情況如何?”
畢齊拿過手中的一份文件,將文件翻到最後幾頁,接著遞給顧律,“老師,這就是我們這近一周的成果,都在這裡了!”
顧律接過來,粗略的掃了一眼,接著滿意的點點頭,“不錯,很不錯。”
雖然畢齊和陳默這兩人誰都看誰不順眼,但彆說,這複環猜想的研究進度倒是一點都沒拉下。
證明複環猜想的大部分難題,都已經被畢齊四人給攻克。
而剩下的那些,就是最簡單的收尾事宜了。
收尾工作,基本上沒有任何技術含量可言。
隻是最後的論文撰寫,說不定要費不少的功夫。
“論文開始寫了嗎?”顧律開口問。
畢齊視線扭頭望向包梓和馬正軒。
這部分工作,是由包梓和馬正軒負責的。
“寫了一部分,大概三分之一左右,老師您現在要看嗎?”包梓輕聲開口答道。
顧律擺擺手,“不用了,到時候論文寫完了,發給我一份就行,我給你們審查一遍,然後找個合適的期刊投稿。”
複環猜想的證明論文。
刊載在《數學年刊》基本上是沒有那個機會的。
因為逼格達不到。
但是四大數學期刊的其餘三家,顧律還是覺得可以稍微爭取一下的。
“我認識《數學新進展》的主編,可以為你們爭取一下。”顧律笑著開口說道。
“謝謝老師!”畢齊四人齊齊道謝。
《數學新進展》,那可是數學界的四大期刊之一,影響因子15.98,可以說是無數數學家的夢想。
並且,在四大數學期刊中,《數學新進展》也不是排在最後一位的。
他們的論文可以刊載在這家期刊上,或者說在研究生階段就有一篇論文被《數學新進展》所錄取,這無疑會在他們的履曆上,增添無比光鮮亮麗的一筆。
這對於他們之後的發展,有著莫大的益處。
麵對眾人的道謝,顧律隻是笑嗬嗬的擺擺手,“不用謝我,你們更應該謝的,其實是你們自己。”
顧律沒說錯。
要是四人這篇論文的水平本身就不夠。
顧律就算是再怎麼走後門,也不可能讓其登上《數學新進展》這樣的頂級期刊。